If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+52t-256=0
a = 3; b = 52; c = -256;
Δ = b2-4ac
Δ = 522-4·3·(-256)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-76}{2*3}=\frac{-128}{6} =-21+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+76}{2*3}=\frac{24}{6} =4 $
| c−7.6=4 | | -18=m/18 | | 2×+y=8 | | 5v4/10=4/5 | | -25=n-19 | | 5x^2+900=0 | | -5.7k=34.2 | | 4*(x-8)=52 | | 24x=32x+40 | | 4y+7+5y-18=180 | | n+4=-18 | | 2(3-4a)+5(a-7)=-3a-29 | | 10+x=7x-44 | | 45/180=x/24 | | 10+1x=7x-44 | | (P+5)-7=4p | | n/9+2=3 | | x+180+29=90 | | n/9-3=-4 | | 5m+8=83 | | x/8+-3/2=-1/4 | | b4-7=4 | | -8x+1=153 | | p^2-30p+91=0 | | 5p-17=3 | | 56+2x+124=180 | | 7a-4a+12=-15 | | 3/x=1/5+8/24 | | b4-7=4b=11 | | 6n-8=-56 | | v-3=179 | | 6h^2-7h=-2 |